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A plate containing a system of cuts is considered. The cuts are oriented 
along a straight line, and the plate is reinforced with a periodic set of stiffen- 
ing ribs (stringers) in direction perpendicular to that line. A tensile force is 
applied to the plate in the direction perpendicular to the line of cuts. The 
problem Is reduced to a system of singular, integro-differential equations. 

The results of the computations are presented in the form of graphs characteriz- 
ing the dependence of the stress intensities at the ends of the cuts and stringers, 
on their length and on the rigidity of the stringers. The problem of the effect 
of the stringers on the state of stress of a weakened plate was studied by a 
number of authors. In particular, the combination of a stringer and a circular 
hole was dealt with in [l], two stringers situated symmetrically about a 

circular hole were considered in [Z], a stringer and a crack in [l, 33, etc. The 
methods developed in these works can be combined with the methods of solv- 
ing the problems of the mathematical theory of cracks [4] to provide an effect- 
ive way if investigating a periodic system of custs [5] strengthened by a period- 
ic system of stiffening ribs. 

The aim of this paper is to estimate the effect of stringers orthogonal to 
the line along which the periodic cuts are distributed, on the stress intensity 
coefficients at the ends of these custs. 

Let a plate be given containing a periodic system of cuts and a periodic system 
of stringers (Fig. 1). The custs lie along the straight line y = 0, are of equal length 

of 2~ and are situated with the intervals 

of length 2b (c < b) so that their middle 

points Zk = (2k + l)b (k = 0, *I, 

+2, . . .) coincide with the centers of 
the intervals. The stringers which are of 
equal length 2a (a< s> and continuously 
attached to the plate, pass through the ends 
of the intervals zfi= 2kb and are perp- 

IF I t pendicular to the straight line y = 0. 

Fig. 1 
The stringers are free to bend, and workonly 

under tension. E, y and h denote the modulus of elasticity, the Poisson’s ratio 
and the thickness of the plate respectively, while E,, and S,, are the modulus of 
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elasticity and the area of transverse cross section of the stringer. 
The following notation is adopted for the elements of the elastic fields: CC, or, 

and Gt, are the stress components, u and v are the plate displacement compon- 

ents, N (y) is the normal force in the cross section of the stringer and 8” (y) denot- 

es the relative elongation of its axis. The following tensile forces act upon the plate: 

UyW = p = const, o m = ~~~~ = 0 z (1) 

and the contours of the cuts are stress free. 
Let us quote the relations [l] defining the problem. The conditions of equilibrium 

of any infinitesimal element of the stringer LI, = {s = 2kb, 1 y ( .< u} attach- 
ed to the plate along its whole length, of the absence of resistance to bending with- 
in the stringer and of the continuity of the displacement components and of relative 

elongation ey = 6~ / ay on the passage across the axis of the stringer, have the 

form 

h (& - z&) - N’ (y) = 0, u,+ - or- = 0 (2) 

u+ + iv+ z u- + iv-, e,+ = e,- = 8” (3) 
The expressions (2) together with the formula N (Y) = E,J& = E&d+, yield 

I, 
” 

h s l(u, + $,)+ - (0, + iqJ] dy - iE,S, ($)’ = 0 
-a 

(4) 

The conditions of absence of the normal and tangential StmSa at the cut edges 

Zk = (1 (2k + l)b - z ( < c, y = 0) have the form 

by+ + i& = cry- + iz& = 0 (5) 
Let US introduce the Kolosov-Muskhelishvili functions m(z) and ‘J’(Z). According 

to [6] we have 
oz + o, d 2 [@ (2) + m (6) 

ol/ - a, + 2iz,, = 2 [SD’ (2) + Y (z)] 

2p (u + iv) = xcp (2) - zcp’(z> - j$T) 

Q(Z) = cp’(Z), Y(Z) =$‘(Z), 2 = x+ iy 

2p = E/(1 + Y), x = (3 - v)/(l + Y) 

Then the relations (3)-( 5) transform into the following boundary value problem: 

Hl+ @I) - HI-- (tr) = 0, t, E Lk (7) 
(x + f)[cp+ (tJ - T- (t,)] + h, Re H2+ (tl) = 0 
H,* (tz) = 0, t, e lk 

where 
HI (2) = xcp (a) - zcp’(z) - II, (z) 

Ha (z) = x’p’ (z) - cp’(z) + zcp”) + 9’) 

H3 (4 = cp’ (4 + cp’ + W’ (2) + qJ’ (2) 

ho = Eosol(2ph) 

Let us assume 

0 (2) = 2 [@lk (2) + @Sk (z)l -t + 
k=-a 

(8) 
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Y (2) :== c {@3k (2) - Wlk (@I’ + cf>4k (4 + 
k=-m 

[(z - 4kb) @2k @)I’) + -&- 

blk = bsk = {(2k + 1) b - c, (2k + 1) b + C) 

bzk = bak = (2kb - ia, 2kb -j- ia) 

The above representations allow the conditions (1) to be fulfilled. The functions CIrti 

(z), @sk (2) become discontinuous during the passage across the cut, and qsk (s), 
q4k (2) during the passage across the line of the stringer. The second and fourth 

relations of@) hold, if fs (5) = -fr (C), f4 (5) = xf2 (5). 
For the remaining two functions we obtain a system of singular, integro-differen- 

tial equations which, after separating the real and imaginary parts (fj = aj + i/Ii, 
j = 1, 2) and using the expansions (see [7] ), of trigonometric and hyperbolic func- 

tions into the sums of partial fractions, assumes the form 

Bz (!I) = 0 
b+c 

s Wl(L4 Bl(E)dS + f w,(E,d% (E>G + F = 0 

(9) 

b-c --(I 

b~w,(E,5)%(S)dE + 5 ~,(L~)%(~)e.= 0 

b-c -a 

37 (x + 1) a2 (y) + LO { ,[ W2 (ET Y) a2’ (8 dE + 

bSiIW,(~,U)R1(5)C~,(~,Y)BI(:)~~~+(x+l)~}=(I 

where b-c 

WI = o ctg o (E - x - b), 

w2 = - 0 [x - 1 + (E - y) $1 ctg 0 (E - y) 

wp=-g [(X+l)W7+2E-&Ws] 

w4 = g- [(x + 3) w, - 2E & w,] 

wj=+- [x - 3 + 2y $1 (y;’ sh 2wy) 

we=+ [ 3t - 1 + 2y $3 (y;’ sin 2oE) 

w,= - + y;’ sin 205, W, = $- y;‘sh 24 

y1 = sin2 oE + sh2 oy, y2 = cos2 CM + sh2 WE, w = $ 
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The second equation of the system (9) holds identically, provided that we set 

011 CE.1 = 07 PI (b - E) = --PI (b + E), a2 (-E) = a2 (E) 

Let us introduce the following change of variables: 

z = CC*, !j = b + cx, z, E E (b - c, b + c) 
Y = w*, E = UT, y, E E (.+a, a) 

Bl(D = + g1 (Q9 aa (E) = + k!z 6) 

This yields the following system of equations (with the asterisk omitted): 

1 l 
7 S .~Ql(z,~)C)gl(z)+Qa(z,~):)*(Z)}dZ = -1, jz[<i (10) 

-1 

62 (Y) - s f 
&’ w a* 

r--Y + 
-1 

1 l 
y s {Qs ('t, Y) g2 W + Q4 (~9 y) g, (q, dr = - 2 t 1 y [ < 1 

-1 

where 
Q1(-c,x) = ectge(z - x) 

Qz(z,~)= -&I&[ (x + 1) (sin 2esh (5, z)) - 

$ -& (sh 2szh (5, T))] 

Qsbv~) = -$k - 2) + $ (x - 4) (7 - y)” - 

$ (x - 6) (z - y)” + 0 (9) 

Q4(~,y)=-~[~-~+2y~](sin2ezh(z,y)) 

h (5, y) = (ch2 sy - sin2 ez)-l 
e = co, s = ao, h = h,, [a (1 + x)]-l = (1 + vja &&/(2ahE) 

The first equation of (lo) can be solved for gl (z). Indeed, consider the finctions 
1 

Fl(Z) - & s 
gl (z) ctg e (z - 2) dz (11) 

-1 
. 

F2(4 = &&s y (r) R+ (7) cos er 

sin e’S - sin ez 
dr++[~-i] 

-1 
(R (2) = (sin2 ez - sin2 e)‘ll, R+ (z) = (sins e - sina m)%) 

Using the 6okhotskii formulas we can confirm that at the cuts we have, by virtue of 

( 1018 
F1+ (z) + F; (z) = Fz+ (5) + F, (z), 5 E II, 

and this yields (see [S], Sect. 108) F, (z) s F, (2). Then 

FI+ (4 - F; (4 =Fz+(x)-FF,(z), XE& 
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The fact that the function & (4 is odd, ensures the relent of the condition of 
uniqueness of the displacements on traversing the circumference of the cut, 
above in parentheses. 

given 

Substituting (12) into the second equation of (lo), we obtain a singular, integro- 
differential equation 

1 

gz(y) - -$ 5 ‘$“‘f + f 5 G(~,y)gz(~)d~ = Pohd (13) 
-1 -1 

G (z, y) = R+ (Q ~0s &?2 (E, r) 4 x (14) 

-1 
1 

s 0~0-1, Y) 4 
II+ (q) (sin eq - sin et) 

-1 

--_I 

The stress intensity coefficient characterizing the singular character of the component 
of the stress field uV attheend z= b+c ofthecut lo, is given by the ex- 
pression 

R =rli~c221/2~ 2 - (b + 4 I 0 (2) 

which, by virtue of(S), (11) and (12), is reduced to the form 

K = KtJ (1 - en-s sin-’ e Ri (El QI K, zt ~0s e% 
sin et - sin e 3 

(15) 

-1 -1 

K. = p (“12cee1 tg e)‘l* 

where K, denotes the value of this coefficient in the case when stringers are absent, 
and is obtained using the results. of ~53, 

Let us also assess the effect of the cuts on the stress intensity at the ends of the 
stringers. We have 
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where R1 (z) is a function continumis on 
Sokhotskli formulas we have, on L,J , 

GJ (Y) - s& (y) = --(I 

As we know cl]. the tangential stresses z& 
end of the stringer lying at the finite part of the 

L 0. According to (8) and the 

+ +% (Y) 

have a singularity of order ‘/a at the 
plane, and this implies that 

where hr and ha are functions cont.inuous on Lo . 
We note that aa (*a) = 0 and this yields gs (1) = g2 (-1) = 0. The 

latter relation is necessary for solving the equation (13). Indeed, according to (8) 
a2 (y) denotes the density of the potential functions ‘pjk (z) (j =‘2,4) represented in 

the form of the Cauchy type integrals. The derivatives of these functions should have 

at the ends Lk singularities of the same order as rXyr i.e. of order ‘1%. But this 

implies that I-& (z) are bounded at the points z = fia + 2kb. In this case the asser- 

tions given in [8], Sect, 22 imply that cz8 (~1 vanishes at Y = &z , 
The stress intensity coefficient at the end of the stringer is 

&t = lim C/a - y$V (y) = - + (?c + 1) lim ~~--yaz’~y) = 

IF-3 u-a (16) 

The integrals in (14) and (15) can be obtained in the form of convergent series in the 
powers of I” = sin e. This follows from the fact that the function h (2, 8) appear- 
ing in the kernels Qz and QP can be expanded into a convergent series in powers 

of sin2 ex / ch2 sy , and from making the replacement sin ex = r cos 0 which 

transforms the integrals into the standard table integrals, Following further the com- 
puting scheme given in [l], Sect. 11, we obtain a system of algebraic equations for 

( 13). 

Fig. 3 Fig. 3 
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Figure 2 depicts the coefficient 

/ (EC&) at Y = 0.3 , 

p = K / K, vems the parameter 6 = 2E,S,, 

for the values of c /b equal to 0.7 (dashed lines) and 0.9 
(solid lines). The quantity a / b assumes the values of 0.4, 0.6 and 0.8 (correspond- 
ing to the lines l-3). The effect of the stringer becomes appreciable when it is sit- 
uated sufficiently near the cut end. When c / b ( 0.7 , the presence of stringers 
reduces the stress intensity by not more than 1%. 

The same effect of removal of the stresses from the cut ends distributed along a 
straight line is observed when the stringers are replaced by weakenings in the form 
of transverse cuts oriented along the direction of the tensile force. We give, for 
comparison purposes9 the values of the stress intensity coefficients for the cases of 
the system of cuts and stringers, and of a system of longitudinal-transverse cuts [4] 

(the corresponding quantities are denoted, respectively, by f&t and p‘r with 
c / b = 0.7 and the stringer stiffness parameter 6 = 25) 

a/b 0.2 0.4 0.6 0.8 

PSf 0.9996 0.9992 0.9967 0.9941 

Pd 0.9861 0.945 0.875 0.778 

We must say however that, when a tensile force appears along the 2 -axis (Fig. 1) 
then the transverse cuts not only become the stress concentrators themselves, but they 

also lead to increase in stress along the longitudinal cuts. 

The behavior of the stress intensity coefficient at the end of the stringer computed 
according to formula (16) is shown in Fig. 3 (with the parameters corresponding to the 
lines just as in Fig. 2) and here K, - K,Jz [p (1 -I- x)1-‘. The reciprocal effect 
of the crack on the stress intensity coefficient at the end of the stringer is also appreci- 

able. 
Increasing the rigidity of the stringers to the values exceeding 6 _ = 25, has no 

noticeable effect on the magnitude of the intensity coefficients neither at the cut ends, 

nor at the end of the stringer. 

The author thanks L. M. Kurshin for assessing the results of this paper. 
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