THE PERIODIC PROBLEM OF REINFORCEMENT OF A PLATE WEAKENED BY A SYSTEM OF CUTS USING STRINGERS

PMM Vol. 43, No. 4, 1979, pp. 730-736
I. D. SUZDAL'NITSKII
(Novosibirsk)
(Received October 23, 1978)

A plate containing a system of cuts is considered. The cuts are oriented along a straight line, and the plate is reinforced with a periodic set of stiffening ribs (stringers) in direction perpendicular to that line. A tensile force is applied to the plate in the direction perpendicular to the line of cuts. The problem is reduced to a system of singular, integro-differential equations. The results of the computations are presented in the form of graphs characterizing the dependence of the stress intensities at the ends of the cuts and stringers, on their length and on the rigidity of the stringers. The problem of the effect of the stringers on the state of stress of a weakened plate was studied by a number of authors. In particular, the combination of a stringer and a circular hole was dealt with in [1], two stringers situated symmetrically about a circular hole were considered in [2], a stringer and a crack in [1, 3], etc. The methods developed in these works can be combined with the methods of solving the problems of the mathematical theory of cracks [4] to provide an effective way if investigating a periodic system of custs [5] strengthened by a periodic system of stiffening ribs.

The aim of this paper is to estimate the effect of stringers orthogonal to the line along which the periodic cuts are distributed, on the stress intensity coefficients at the ends of these custs.
Let a plate be given containing a periodic system of cuts and a periodic system of stringers (Fig. 1). The custs lie along the straight line $y=0$, are of equal length of $2 c$ and are situated with the intervals

Fig. 1 of length $2 b(c<b)$ so that their middle points $\quad x_{k}=(2 k+1) b \quad(k=0, \pm 1$, $\pm 2, \ldots$.) coincide with the centers of the intervals. The stringers which are of equal length $2 a(a<b)$ and continuously attached to the plate, pass through the ends of the intervals $x_{k}=2 k b$ and are perppendicular to the straight line $y=0$. The stringers are free to bend, and work only
under tension. E, v and h denote the modulus of elasticity, the Poisson's ratio and the thickness of the plate respectively, while E_{0} and S_{0} are the modulus of
elasticity and the area of transverse cross section of the stringer.
The following notation is adopted for the elements of the elastic fields: σ_{x}, σ_{y} and $\tau_{x y}$ are the stress components, u and v are the plate displacement components, $N(y)$ is the normal force in the cross section of the stringer and $\varepsilon^{\circ}(y)$ denotes the relative elongation of its axis. The following tensile forces act upon the plate:

$$
\begin{equation*}
\sigma_{y}{ }^{\infty}=p=\mathrm{const}, \quad \sigma_{x}^{\infty}=\tau_{x y}{ }^{\infty}=0 \tag{1}
\end{equation*}
$$

and the contours of the cuts are stress free.
Let us quote the relations [1] defining the problem. The conditions of equilibrium of any infinitesimal element of the stringer $L_{k}=\{x=2 k b,|y|<a\}$ attached to the plate along its whole length, of the absence of resistance to bending within the stringer and of the continuity of the displacement components and of relative elongation $\varepsilon_{y}=\partial v / \partial y$ on the passage across the axis of the stringer, have the form

$$
\begin{align*}
& h\left(\tau_{x y}^{+}-\tau_{x y}^{-}\right)-N^{\prime}(y)=0, \quad \sigma_{x}^{+}-\sigma_{x}^{-}=0 \tag{2}\\
& u^{+}+i v^{+}=u^{-}+i v^{-}, \quad \varepsilon_{y}^{+}=\varepsilon_{y}^{-}=\varepsilon^{\circ} \tag{3}
\end{align*}
$$

The expressions (2) together with the formula $N(y)=E_{0} S_{0} \varepsilon^{\circ}=E_{0} S_{0} v^{+}$, yield

$$
\begin{equation*}
h \int_{-a}^{y}\left[\left(\sigma_{x}+i \tau_{x y}\right)^{+}-\left(\sigma_{x}+i \tau_{x y}\right)^{-}\right] d y-i E_{0} S_{0}\left(\frac{\partial v}{\partial y}\right)^{+}=0 \tag{4}
\end{equation*}
$$

The conditions of absence of the normal and tangential stresses at the cut edges

$$
l_{k}=\{|(2 k+1) b-x|<c, y=0\} \text { have the form }
$$

$$
\begin{equation*}
\sigma_{y}^{+}+i \tau_{x y}^{+}=\sigma_{y}^{-}+i \tau_{x y}^{-}=0 \tag{5}
\end{equation*}
$$

Let us introduce the Kolosov-Muskhelishvili functions $\Phi(z)$ and $\Psi(z)$. According to [6] we have

$$
\begin{align*}
& \sigma_{x}+\sigma_{y}=2[\Phi(z)+\overline{\Phi(z)]} \tag{6}\\
& \sigma_{y}-\sigma_{x}+2 i \tau_{x y}=2\left[\bar{z} \Phi^{\prime}(z)+\Psi(z)\right] \\
& 2 \mu(u+i v)=x \varphi(z)-z \overline{\varphi^{\prime}(z)}-\overline{\psi(z)} \\
& \Phi(z)=\varphi^{\prime}(z), \quad \Psi(z)=\psi^{\prime}(z), \quad z=x+i y \\
& 2 \mu=E /(1+v), \quad x=(3-v) /(1+v)
\end{align*}
$$

Then the relations (3)-(5) transform into the following boundary value problem:

$$
\begin{align*}
& H_{1}^{+}\left(t_{1}\right)-H_{1}^{-}\left(t_{1}\right)=0, \quad t_{1} \in L_{k} \tag{7}\\
& (x+1)\left[\varphi^{+}\left(t_{1}\right)-\varphi^{-}\left(t_{1}\right)\right]+\lambda_{0} \operatorname{Re} H_{2}^{+}\left(t_{1}\right)=0 \\
& H_{3} \pm\left(t_{2}\right)=0, \quad t_{2} \in l_{k}
\end{align*}
$$

where

$$
\begin{aligned}
& H_{1}(z)=x \varphi(z)-\overline{z \varphi^{\prime}(z)}-\overline{\psi(z)} \\
& H_{2}(z)=x \varphi^{\prime}(z)-\overline{\varphi^{\prime}(z)}+z \overline{\varphi^{\prime \prime}(z)}+\overline{\psi^{\prime}(z)} \\
& H_{3}(z)=\varphi^{\prime}(z)+\overline{\varphi^{\prime}(\bar{z})}+\bar{z} \varphi^{\prime \prime}(z)+\psi^{\prime}(z) \\
& \lambda_{0}=E_{0} s_{0} /(2 \mu h)
\end{aligned}
$$

Let us assume

$$
\begin{equation*}
\Phi(z)=\sum_{k=-\infty}^{\infty}\left[\Phi_{1 k}(z)+\Phi_{2 k}(z)\right]+\frac{p}{4 h} \tag{8}
\end{equation*}
$$

$$
\begin{aligned}
& \Psi(z)=\sum_{k=-\infty}^{\infty}\left\{\Phi_{3 k}(z)-\left[z \Phi_{1 k}(z)\right]^{\prime}+\Phi_{4 k}(z)+\right. \\
& \left.\quad\left[(z-4 k b) \Phi_{2 k}(z)\right]^{\prime}\right\}+\frac{p}{2 h} \\
& \Phi_{j k}(z)=\frac{1}{2 \pi i} \int_{b_{j k}} \frac{f_{j}(\zeta) d \zeta}{\zeta-2}, \quad j=1,3 \\
& \varphi_{j k}(z)=\frac{1}{2 \pi i} \int_{b_{j k}}^{\infty} \frac{f_{j}(\zeta) d \zeta}{\zeta-z}, \quad \Phi_{j k}(z)=\varphi_{j k}(z), \quad j=2,4 \\
& b_{1 k}=b_{3 k}=\{(2 k+1) b-c,(2 k+1) b+c\} \\
& b_{2 k}=b_{\mathbf{4 k}}=\{2 k b-i a, 2 k b+i a\}
\end{aligned}
$$

The above representations allow the conditions (1) to be fulfilled. The functions $\Phi_{1 k}$ $(z), \Phi_{3^{k}}(z)$ become discontinuous during the passage across the cut, and $\varphi_{2 k}(z)$, $\varphi_{4 k}(z)$ during the passage across the line of the stringer. The second and fourth relations of (8) hold, if $f_{3}(\zeta)=-\overline{f_{1}(\zeta)}, \quad f_{4}(\zeta)=x f_{2}(\zeta)$.

For the remaining two functions we obtain a system of singular, integro-differential equations which, after separating the real and imaginary parts ($f_{j}=\alpha_{j}+i \beta_{j}$, $j=1,2$) and using the expansions (see [7]), of trigonometric and hyperbolic functions into the sums of partial fractions, assumes the form

$$
\begin{align*}
& \int_{\substack{b-c \\
b+c}}^{\beta_{2}(y)} W_{1}(\xi, x) \beta_{1}(\xi) d \xi+\int_{-a}^{a} W_{3}(\xi, x) \alpha_{2}(\xi) d \xi+\frac{\pi p}{h}=0 \tag{9}\\
& \int_{b-c}^{b+c} W_{1}(\xi, x) \alpha_{1}(\xi) d \xi+\int_{-a}^{a} W_{4}(\xi, x) \alpha_{2}(\xi) d \xi=0 \\
& \pi(x+1) \alpha_{2}(y)+\lambda_{0}\left\{\int_{-a}^{a} W_{2}(\xi, y) \alpha_{2}^{\prime}(\xi) d \xi+\right. \\
& \left.\quad \int_{b-c}^{b+c}\left[W_{5}(\xi, y) \alpha_{1}(\xi)+W_{6}(\xi, y) \beta_{1}(\xi)\right] d \xi+(x+1) \frac{p}{4 h}\right\}=0 \\
& W_{1}=\omega \operatorname{ctg} \omega(\xi-x-b), \\
& W_{2}=-\omega\left[x-1+(\xi-y) \frac{d}{d y}\right] \operatorname{ctg} \omega(\xi-y) \\
& W_{3}=\frac{d}{d x}\left[(x+1) W_{7}+2 \xi \frac{d}{d x} W_{8}\right] \\
& W_{4}=\frac{d}{d x}\left[(x+3) W_{8}-2 \xi \frac{d}{d x} W_{7}\right] \\
& W_{5}=\frac{\omega}{4}\left[x-3+2 y \frac{d}{d y}\right]\left(\gamma_{1}^{-1} \operatorname{sh} 2 \omega y\right) \\
& W_{6}=\frac{\omega}{4}\left[x-1+2 y \frac{d}{d y}\right]\left(\gamma_{1}^{-1} \sin 2 \omega \xi\right) \\
& W_{7}=-\frac{\omega}{4} \gamma_{2}^{-1} \sin 2 \omega x, \quad W_{8}=\frac{\omega}{4} \gamma_{2}^{-1} \operatorname{sh}^{2} 2 \omega \xi \\
& \gamma_{1}=\sin ^{2} \omega \xi+\operatorname{sh}^{2} \omega y, \quad \gamma_{2}=\cos ^{2} \omega x+\operatorname{sh}^{2} \omega \xi, \quad \omega=\frac{\pi}{2 b}
\end{align*}
$$

where

The second equation of the system (9) holds identically, provided that we set

$$
\alpha_{1}(\xi)=0, \quad \beta_{1}(b-\xi)=-\beta_{1}(b+\xi), \quad \alpha_{2}(-\xi)=\alpha_{2}(\xi)
$$

Let us introduce the following change of variables:

$$
\begin{aligned}
& x=c x^{*}, \quad \xi=b+c \tau, \quad x, \xi \in(b-c, b+c) \\
& y=a y^{*}, \quad \xi=a \tau, \quad y, \xi \in(-a, a) \\
& \beta_{1}(\xi)=\frac{p}{h} g_{1}(\tau), \quad \alpha_{2}(\xi)=\frac{p}{h} g_{2}(\tau)
\end{aligned}
$$

This yields the following system of equations (with the asterisk omitted):

$$
\begin{align*}
& \frac{1}{\pi} \int_{-1}^{1}\left\{Q_{1}(\tau, x) g_{1}(\tau)+Q_{2}(\tau, x) g_{2}(\tau)\right\} d \tau=-1, \quad|x|<1 \tag{10}\\
& g_{2}(y)-\frac{\lambda x}{\pi} \int_{-1}^{1} \frac{g_{8}^{\prime}(\tau) d \tau}{\tau-y}+ \\
& \quad \frac{1}{\pi} \int_{-1}^{1}\left\{Q_{3}(\tau, y) g_{2}(\tau)+Q_{4}(\tau, y) g_{1}(\tau)\right\} d \tau=-\frac{\lambda_{0}}{4 \pi}, \quad|y|<1
\end{align*}
$$

where

$$
\begin{aligned}
& Q_{1}(\tau, x)=e \operatorname{ctg} e(\tau-x) \\
& Q_{2}(\tau, x)=-\frac{s^{2}}{4 e} \frac{d}{d x}[(x+1)(\sin 2 e x h(x, \tau))- \\
& \left.\quad \frac{2 s \tau}{e} \frac{d}{d x}(\operatorname{sh} 2 s \tau h(x, \tau))\right] \\
& Q_{3}(\tau, y)=-\frac{s^{2}}{3}(x-2)+\frac{s^{4}}{15}(x-4)(\tau-y)^{2}- \\
& \quad \frac{2 s^{6}}{189}(x-6)(\tau-y)^{4}+O\left(s^{8}\right) \\
& Q_{4}(\tau, y)=-\frac{e}{2}\left[x-1+2 y \frac{d}{d y}\right](\sin 2 e \tau h(\tau, y)) \\
& h(x, y)=\left(\operatorname{ch}^{2} s y-\sin ^{2} e x\right)^{-1} \\
& e=c \omega, \quad s=a \omega, \quad \lambda=\lambda_{0}[a(1+x)]^{-1}=(1+v)^{2} S_{0} E_{0} /(2 a h E)
\end{aligned}
$$

The first equation of (10) can be solved for $g_{1}(x)$. Indeed, consider the finctions

$$
\begin{align*}
& F_{1}(z)=\frac{e}{2 \pi} \int_{-1}^{1} g_{1}(\tau) \operatorname{ctg} e(\tau-z) d \tau \tag{11}\\
& F_{2}(z)=\frac{1}{R(z)} \frac{e}{2 \pi} \int_{-1}^{1} \frac{\gamma(\tau) R^{+}(\tau) \cos e \tau}{\sin e \tau-\sin e z} d \tau+\frac{1}{2}\left[\frac{\sin e z}{R(z)}-1\right] \\
& \left(R(z)=\left(\sin ^{2} e z-\sin ^{2} e\right)^{2 / z}, \quad R^{+}(\tau)=\left(\sin ^{2} e-\sin ^{2} e \tau\right)^{1 / z}\right)
\end{align*}
$$

Using the Sokhotskii formulas we can confirm that at the cuts we have, by virtue of (10),

$$
F_{1}^{+}(x)+F_{1}^{-}(x)=F_{2}^{+}(x)+F_{2}^{-}(x), \quad x \in l_{k}
$$

and this yields (see [6], Sect. 108) $F_{1}(z) \equiv F_{2}(z)$. Then

$$
F_{1}^{+}(x)-F_{1}^{-}(x)=F_{2}^{+}(x)-F_{2}^{-}(x), \quad x \models l_{k}
$$

or

$$
\begin{align*}
& g_{1}(x)=-\left[R^{+}(x)\right]^{-1}\left(\sin e x+\frac{e}{\pi} \int_{-1}^{1} \frac{\gamma(\tau) R^{+}(\tau) \cos e \tau}{\sin e \tau-\sin e x} d \tau\right) \tag{12}\\
& \left(\int_{-1}^{1} g_{1}(x) d x=0\right) \\
& \gamma(x)=-\frac{1}{\pi} \int_{-1}^{1} Q_{2}(\tau, x) g_{2}(\tau) d \tau
\end{align*}
$$

The fact that the function $g_{1}(x)$ is odd, ensures the fulfilment of the condition of uniqueness of the displacements on traversing the circumference of the cut, given above in parentheses.

Substituting (12) into the second equation of (10), we obtain a singular, integrodifferential equation

$$
\begin{align*}
& g_{2}(y)-\frac{\lambda x}{\pi} \int_{-1}^{1} \frac{g_{2}^{\prime}(\tau) d \tau}{\tau-y}+\frac{1}{\pi} \int_{-1}^{1} G(\tau, y) g_{2}(\tau) d \tau=p_{0}(y) \tag{13}\\
& G(\tau, y)=-\lambda Q_{3}(\tau, y)-\frac{e}{\pi^{2}} \int_{-1}^{1} R^{+}(\xi) \cos e \xi Q_{2}(\xi, \tau) d \xi \times \tag{14}\\
& \quad \int_{-1}^{1} \frac{Q_{4}(\eta, y) d \eta}{R^{+}(\eta)(\sin e \eta-\sin e \xi)} \\
& p_{0}(y)=\frac{1}{\pi} \int_{-1}^{1}\left[R^{+}(\eta)\right]^{-1} Q_{4}(\eta, y) \sin e \eta d \eta-\frac{\lambda_{0}}{4 \pi}
\end{align*}
$$

The stress intensity coefficient characterizing the singular character of the component of the stress field σ_{y} at the end $z=b+c$ of the cut l_{0}, is given by the expression

$$
K=\lim _{z \rightarrow b+c} 2 \sqrt{2|z-(b+c)|} \Phi(z)
$$

which, by virtue of (8), (11) and (12), is reduced to the form

$$
\begin{align*}
& K=K_{0}\left(1-e \pi^{-2} \sin ^{-1} e \int_{-1}^{1} g_{2}(\tau) d \tau \int_{-1}^{1} \frac{R^{+}(\xi) Q_{2}(\xi, \tau) \cos e \xi}{\sin e \xi-\sin e} d \xi\right) \tag{15}\\
& K_{0}=p\left({ }^{1 / 2} c e^{-1} \operatorname{tg} e\right)^{1 / 2}
\end{align*}
$$

where K_{0} denotes the value of this coefficient in the case when stringers are absent, and is obtained using the results. of [5].

Let us also assess the effect of the cuts on the stress intensity at the ends of the stringers. We have

$$
\begin{aligned}
& \tau_{x y}=\operatorname{Im}\left[\bar{z} \varphi^{\prime \prime}(z)+\psi^{\prime}(z)\right]= \\
& \quad \operatorname{Im}\left[\varphi_{20}^{\prime}(z)+\varphi_{40}^{\prime}(z)+(z+\bar{z}) \varphi_{20}{ }^{\prime \prime}(z)+R_{1}(z)\right]
\end{aligned}
$$

where $R_{1}(z)$ is a function continuou's on L_{0}. According to (8) and the Sokhotskii formulas we have, on L_{0},

$$
\tau_{x y}^{+}(y)-\tau_{x_{y}}(y)=-(1+x) \alpha_{2}^{\prime}(y)
$$

As we know [1], the tangential stresses $\tau_{x y}^{ \pm}$have a singularity of order $1 / 2$ at the end of the stringer lying at the finite part of the plane, and this implies that

$$
\tau_{x y}^{ \pm}(y)=\mp^{1 / 2}(1+x)\left(a^{2}-y^{2}\right)^{-1 / 2} h_{1}(y)+h_{2}(y)
$$

where h_{1} and h_{2} are functions continuous on L_{0}.
We note that $\alpha_{2}(\pm a)=0$ and this yields $g_{2}(1)=g_{2}(-1)=0$. The latter relation is necessary for solving the equation (13). Indeed, according to (8) $\alpha_{2}(y)$ denotes the density of the potential functions $\varphi_{j k}(z)(j=2,4)$ represented in the form of the Cauchy type integrals. The derivatives of these functions should have at the ends L_{k} singularities of the same order as $\tau_{x y}$, i. e. of order $1 / 2$. But this implies that $\varphi_{j k}(z)$ are bounded at the points $z= \pm i a+2 k b$. In this case the assertions given in $[8]$, sect. 22 imply that $\alpha_{2}(y)$ vanishes at $y= \pm a$.

The stress intensity coefficient at the end of the stringer is

$$
\begin{align*}
& K_{s t}=\lim _{y \rightarrow a} \sqrt{a-y} \tau_{x y}^{+}(y)-\frac{1}{2}(x+1) \lim _{y \rightarrow a} \sqrt{a-y} \alpha_{2}^{\prime}(y)= \tag{16}\\
& \quad \frac{p \sqrt{a}}{2 h}(x+1) \lim _{y \rightarrow 1} \frac{g_{2}(y)}{\sqrt{1-y^{2}}}
\end{align*}
$$

The integrals in (14) and (15) can be obtained in the form of convergent series in the powers of $r=\sin e$. This follows from the fact that the function $h(x, y)$ appearing in the kernels Q_{2} and Q_{4} can be expanded into a convergent series in powers of $\sin ^{2} e x / \mathrm{ch}^{2} s y$, and from making the replacement $\sin e x=r \cos \theta$ which transforms the integrals into the standard table integrals. Following further the computing scheme given in [1], sect. 11, we obtain a system of algebraic equations for (13).

Fig. 2

Fig. 3

Figure 2 depicts the coefficient $\rho=K / K_{0}$ versus the parameter $\delta=2 E_{0} S_{0}$ $/(E a h)$ at $v=0.3$, for the values of c / b equal to 0.7 (dashed lines) and 0.9 (solid lines). The quantity a / b assumes the values of $0.4,0.6$ and 0.8 (corresponding to the lines $1-3$). The effect of the stringer becomes appreciable when it is situated sufficiently near the cut end. When $c / b<0.7$, the presence of stringers reduces the stress intensity by not more than 1%.

The same effect of removal of the stresses from the cut ends distributed along a straight line is observed when the stringers are replaced by weakenings in the form of transverse cuts oriented along the direction of the tensile force. We give, for comparison purposes, the values of the stress intensity coefficients for the cases of the system of cuts and stringers, and of a system of longitudinal-transverse cuts [4] (the corresponding quantities are denoted, respectively, by $\rho_{s t}$ and $\rho_{a i}$ with $c / b=0.7$ and the stringer stiffness parameter $\delta=25$)

a / b	0.2	0.4	0.6	0.8
$\rho_{s t}$	0.9996	0.9992	0.9967	0.9941
$\rho_{s l}$	0.9861	0.945	0.875	0.778

We must say however that, when a tensile force appears along the x-axis (Fig. 1) then the transverse cuts not only become the stress concentrators themselves, but they also lead to increase in stress along the longitudinal cuts.

The behavior of the stress intensity coefficient at the end of the stringer computed according to formula (16) is shown in Fig. 3 (with the parameters corresponding to the lines just as in Fig. 2) and here $K_{a}=K_{s i} h[p(1+x)]^{-1}$. The reciprocal effect of the crack on the stress intensity coefficient at the end of the stringer is also appreciable.

Increasing the rigidity of the stringers to the values exceeding $\delta_{=}=25$, has no noticeable effect on the magnitude of the intensity coefficients neither at the cut ends, nor at the end of the stringer.

The author thanks L. M. Kurshin for assessing the results of this paper.

REFERENCES

1. Kalandiia, A. I. Mathematical Methods of Two-dimensional Elasticity. Moscow, "Nauka", 1973.
2. Zhorzholiani, G. T. and Kalandiia, A. I. The effect of a stringer on the stress distribution around a hole. PMM Vol. 38, No. 1, 1974.
3. Greif, R. and Sanders, J. L., Jr. The effect of a stringer on the stress in a cracked sheet. Trans. ASME. Ser. E. J. Appl. Mech., 32, No. 1, 1965.
4. Kurshin, L. M. and Suzdal'nitskii, I. D. Stress state of an elastic plane weakened by an infinite series of longitudinally-transverse cracks. PMTF No. 5, 1975.
5. Koiter, W. T. An infinite row of collinear cracks in an infinite elastic sheet. ungr-Arch., Bd 28, S. 168-172. 1958.
6. Muskhelishvili, N. I. Some Basic Problems of the Mathematical Theory of Elasticity. (English translation), Groningen, Noordhoff, 1953.
7. Gradshtein, I. S. and Ryzhik, L. M. Tables of Integrals, Sums, Series and Products. Moscow, Fizmatgiz, 1963. (see also English translation, Pergamon Press, Book №. 09832, 1963).
8. Muskhelishvili, N. I. Singular Integral Equations. Moscow, "Nauka", 1968.
